Senary Numbers
In science and computer science, the system of the senary numbers are a number system in which numbers are represented using the digits from 0 to 5 (0-5). It can be used as a checking tool, along with the octal system and the sexagesimal system. The senary system or sexagesimal system is based on a number (x).
Exponentiation
Senary numbers use only six digits, digits increase faster than other bases. But, the exponents of two and three are equal, this can be expressed as: 10(6)n = 2(6)n × 3(6)n.
In particular, six and ten have the same structure whose prime factors have the same exponents. Also, six to the 4n-th power (104n) is close to ten to the 3n-th power (143n). For instance:
- 1.0000(6) = 1.296(10) (equivalent to kilogram)
- 1.0000.0000(6) = 1.679.616(10) (equivalent to mega)
- 1.0000.0000.0000(6) = 2.176.782.336(10) (equivalent to giga)
- 1.0000.0000.0000.0000(6) = 2.821.109.907.456(10) (equivalent to tera)
Factorization of basic prime numbers:
Power of six by senary notation
Exponent | Senary | Decimal equivalent | Duodecimal equivalent | Vigesimal equivalent |
---|---|---|---|---|
1 | 10 | 6 | 6 | 6 |
2 | 100 | 62 = 36 | 62 = 30 | 62 = 1G |
3 | 1 000 | 63 = 216 | 63 = 160 | 63 = AG |
4 | 10 000 | 64 = 1 296 | 64 = 900 | 64 = 34G |
5 | 100 000 | 65 = 7 776 | 65 = 4 600 | 65 = J8G |
10 | 1 000 000 | 66 = 46 656 | 66 = 23 000 | 66 = 5 GCG |
11 | 10 000 000 | 67 = 279 936 | 67 = 116 000 | 67 = 1E JGG |
12 | 100 000 000 | 68 = 1 679 616 | 68 = 690 000 | 68 = A9 J0G |
13 | 1 000 000 000 | 69 = 10 077 696 | 69 = 3 460 000 | 69 = 32J E4G |
14 | 10 000 000 000 | 610 = 60 466 176 | 6A = 18 300 000 | 6A = IHI 58G |
15 | 100 000 000 000 | 611 = 362 797 056 | 6B = A1 600 000 | 6B = 5 D79 CCG |
20 | 1 000 000 000 000 | 612 = 2 176 782 336 | 610 = 509 000 000 | 6C = 1E 04H FGG |
21 | 10 000 000 000 000 | 613 = 13 060 694 016 | 611 = 2 646 000 000 | 6D = A4 196 F0G |
22 | 100 000 000 000 000 | 614 = 78 364 164 096 | 612 = 13 230 000 000 | 6E = 314 8G0 A4G |
23 | 1 000 000 000 000 000 | 615 = 470 184 984 576 | 613 = 77 160 000 000 | 6F = I76 CG3 18G |
24 | 10 000 000 000 000 000 | 616 = 2 821 109 907 456 | 614 = 396 900 000 000 | 6G = 5 A3J GGI 8CG |
25 | 100 000 000 000 000 000 | 617 = 16 926 659 444 736 | 615 = 1 A94 600 000 000 | 6H = 1D 13J 11A BGG |
30 | 1 000 000 000 000 000 000 | 618 = 101 559 956 668 416 | 616 = B 483 000 000 000 | 6I = 9I 73E 693 B0G |
Integer notation (whole number that can be positive, negative, or zero)
From senary to decimal
Here are the first numbers from 1 to 40 and from 91 to 110 expressed in senary and then decimal positional notation.
Senary | 1 | 2 | 3 | 4 | 5 | 10 | 11 | 12 | 13 | 14 | 15 | 20 | 21 | 22 | 23 | 24 | 25 | 30 | 31 | 32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Decimal | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Senary | 33 | 34 | 35 | 40 | 41 | 42 | 43 | 44 | 45 | 50 | 51 | 52 | 53 | 54 | 55 | 100 | 101 | 102 | 103 | 104 |
Decimal | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
Senary | 231 | 232 | 233 | 234 | 235 | 240 | 241 | 242 | 243 | 244 | 245 | 250 | 251 | 252 | 253 | 254 | 255 | 300 | 301 | 302 |
Decimal | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |
Senary numbers are expresses six as “10”, nine (9) as “13” i.e. “six plus three”, ten (decimal 10) as “14” i.e. “six plus four”, twelve (decimal 12) as “20” i.e. “two sixes”, sixteen (decimal 16) as “24” i.e. “two sixes and four“.
Digits for multiples of three end in 3 or 0, e.g. decimal 18 (eighteen) is expressed as “30” (three sixes), decimal 15 (ten and five) is expressed as “23” (two sixes and three), decimal 27 (two ten and seven) is expressed as “43” (four sixes and three).
Numbers over 100 (decimal 36), e.g. decimal 81 is expressed as “213” to say “two of six squares, six and three”, decimal 100 is expressed as “244” to say “two of six squares, four six and four“.
Notation rating breakdown:
- 810 = 126 = 1×6 + 2
- 1010 = 146 = 1×6 + 4
- 1210 = 206 = 2×6
- 2710 = 436 = 4×6 + 3
- 3010 = 506 = 5×6
- 3610 = 1006 = 1×62
- 4910 = 1216 = 1×62 + 2×61 + 1
- 5610 = 1326 = 1×62 + 3×61 + 2
- 6410 = 1446 = 1×62 + 4×61 + 4
- 8110 = 2136 = 2×62 + 1×61 + 3
- 10010 = 2446 = 2×62 + 4×61 + 4
- 10810 = 3006 = 3×62
- 12510 = 3256 = 3×62 + 2×61 + 5
- 14410 = 4006 = 4×62
- 17510 = 4516 = 4×62 + 5×61 + 1
- 18010 = 5006 = 5×62
- 21610 = 10006 = 1×63
- 25610 = 11046 = 1×63 + 1×62 + 0×61 + 4
- 56910 = 23456 = 2×63 + 3×62 + 4×61 + 5
- 72910 = 32136 = 3×63 + 2×62 + 1×61 + 3
- 100010 = 43446 = 4×63 + 3×62 + 4×61 + 4
- 102410 = 44246 = 4×63 + 4×62 + 2×61 + 4
- 108010 = 50006 = 5×63
- 129610 = 100006 = 1×64
- 194410 = 130006 = 1×64 + 3×63
- 200010 = 131326 = 1×64 + 3×63 + 1×62 + 3×61 + 2
- 500010 = 350526 = 3×64 + 5×63 + 0×62 + 5×61 + 2
- 656110 = 502136 = 5×64 + 0×63 + 2×62 + 1×61 + 3
Examples of arithmetic operations
Decimal | Senary |
---|---|
1944 + 56 = 2000 | 13000 + 132 = 13132 |
100 – 64 = 36 | 244 – 144 = 100 |
16 × 81 = 1296 | 24 × 213 = 10000 |
1080 ÷ 27 = 40 | 5000 ÷ 43 = 104 |
64 / 144 = 4 / 9 | 144 / 400 = 4 / 13 |
38 = 6561 | 312 = 50213 |
24 = 23×3 | 40 = 23×3 |
Date and hour
Events | Decimal | Senary |
---|---|---|
The death of Alfred Nobel | 10 / 12 / 1896 | 14 / 20 / 12440 |
Atomic bombing of Hiroshima | 6 / 8 / 1945 | 10 / 12 / 13001 |
September 11, 2001 attacks | 11 / 9 / 2001 | 15 / 13 / 13133 |
From decimal to senary
Here are some benchmarks.
Decimal | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 12 | 15 | 18 | 24 | 27 | 30 | 36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Senary | 1 | 2 | 3 | 4 | 5 | 10 | 11 | 12 | 13 | 20 | 23 | 30 | 40 | 43 | 50 | 100 |
Decimal | 42 | 54 | 72 | 108 | 144 | 162 | 180 | 216 | 324 | 432 | 648 | 972 | 1080 | 1296 | 1944 | 2592 |
Senary | 110 | 130 | 200 | 300 | 400 | 430 | 500 | 1000 | 1300 | 2000 | 3000 | 4300 | 5000 | 10000 | 13000 | 20000 |
As will be described in detail in the section on fractions, the upper-digit shift of senary numbers has a relationship of “four to nine” (4×13 = 100).
Therefore, four 130s will be 1000, nine 400s will be 10000, three quarters of 1000 will be 430, two ninths of 100 will be 12.
Doubles or duplicate detection
- All numbers ending in senary with a digit representing a multiple of 2 — i.e. 2, 4, 0 — are divisible by 2.
- All numbers ending in a digit representing a multiple of 3 — that is, 3 and 0 — divisible by 3.
- If the last two digits are a multiple of 4 {04, 12, 20, 24, 32, 40, 44, 52, 00} — that’s a multiple of 4. Nine (13 = 3²) types in all.
- If the sum of the digits is a multiple of 5 — it is a multiple of 5.
- If the last two digits are a multiple of 13 {13, 30, 43, 00} — it’s a multiple of 13 (nine). 4 (= 2²) types in all.
(as in decimal, all numbers ending in a digit representing a multiple of 2 — i.e. 2, 4, 6, 8, 0 are divisible by 2; and all numbers ending in a multiple of 5 — i.e. 5 and 0 — divisible by 5).
Prime number
A prime number other than 2 or 3 can therefore only end in senary with 1 or 5. (in decimal a prime number other than 2 or 5 can only end with 1, 3, 7 or 9).
- Prime numbers from 1 to 100 (to decimal 36)
- 2, 3, 5, 11, 15, 21, 25, 31, 35, 45, 51
- Prime numbers from 101 to 1000 (decimal 37 to 216)
- 101, 105, 111, 115, 125, 135, 141, 151, 155, 201, 211, 215, 225, 241, 245, 251, 255
- 301, 305, 331, 335, 345, 351, 405, 411, 421, 431, 435, 445, 455, 501, 515, 521, 525, 531, 551
- Compound numbers that are neither divisible by 2 nor by 3, from 1 to 1000 (to decimal 216)
- 41, 55, 121, 131, 145, 205, 221, 231, 235, 311, 315, 321, 325, 341, 355, 401, 415, 425, 441, 451, 505, 511, 535, 541, 545, 555
Fractions and divisions
Six is the product of two prime numbers, namely 2 and 3. As a result, some properties of senary positional notation are reminiscent of those of decimal positional notation.
All fractions whose denominator knows no other prime factor than 2 and 3 are expressed in senary with a finite number of decimal places. (Compare with the role of 2 and 5 in decimal.) Six and ten are only even numbers, a quarter is expressed as two decimal places. Thus, senary and decimal system, the position of 3 and 5 is reversed. For example, “0.2” is 1/5 (i.e. two tenths) in decimal, but 1/3 (i.e. two sixths) in senary.
In senary notation, reciprocals of powers of 2 are powers of 3, reciprocals of powers of 3 are powers of 2, dividing by powers of 2 and 3 becomes easier than any notation. Thus, the powers of 3 become dominant, the powers of 5 become weak.
The senary fraction have the characteristic of “short repetition” as being the same as the decimal fraction. Decimal fraction have 3-3 requires 3 digit repeats, 3-4 requires 9 (=3-2) digit repeats. Like this, the senary fraction have 5-2 requires 5-digit repetitions. The number whose repetitions reach about twenty-seven is 3-5 in decimal (33, twenty-seven digits), 5-3 in senary (5², twenty-five digits).
Unit fraction
Factorisation | Décimal | Sénaire |
---|---|---|
2 | 1/2 = 0,5 | 1/2 = 0,3 |
3 | 1/3 = 0,33 repetition | 1/3 = 0,2 |
22 | 1/4 = 0,25 | 1/4 = 0,13 |
5 | 1/5 = 0,2 | 1/5 = 0,11 repetition |
2×3 | 1/6 = 0,166 répétition | 1/10 = 0,1 |
11 | 1/7 = 0,142857142857 repetition | 1/11 = 0,0505 repetition |
23 | 1/8 = 0,125 | 1/12 = 0,043 |
32 | 1/9 = 0,11 repetition | 1/13 = 0,04 |
2×5 | 1/10 = 0,1 | 1/14 = 0,033 repetition |
15 | 1/11 = 0,0909 repetition | 1/15 = 0,03134524210313452421 repetition |
22×3 | 1/12 = 0,08333 repetition | 1/20 = 0,03 |
21 | 1/13 = 0,076923076923 repetition | 1/21 = 0,024340531215024340531215 repetition |
2×11 | 1/14 = 0,0714285714285 repetition | 1/22 = 0,02323 repetition |
3×5 | 1/15 = 0,066 repetition | 1/23 = 0,022 repetition |
24 | 1/16 = 0,0625 | 1/24 = 0,0213 |
2×32 | 1/18 = 0,055 repetition | 1/30 = 0,02 |
22×5 | 1/20 = 0,05 | 1/32 = 0,0144 repetition |
23×3 | 1/24 = 0,04166 repetition | 1/40 = 0,013 |
52 | 1/25 = 0,04 | 1/41 = 0.0123501235 repetition |
33 | 1/27 = 0,037037 repetition | 1/43 = 0,012 |
25 | 1/32 = 0,03125 | 1/52 = 0,01043 |
22×32 | 1/36 = 0,0277 repetition | 1/100 = 0,01 |
23×5 | 1/40 = 0,025 | 1/104 = 0,00522 repetition |
24×3 | 1/48 = 0,020833 repetition | 1/120 = 0,0043 |
2×52 | 1/50 = 0,02 | 1/122 = 0,00415304153 repetition |
2×33 | 1/54 = 0,0185185 repetition | 1/130 = 0,004 |
210 | 1/64 = 0,015625 | 1/144 = 0,003213 |
23×32 | 1/72 = 0,01388 répétition | 1/200 = 0,003 |
24×5 | 1/80 = 0,0125 | 1/212 = 0,002411 repetition |
34 | 1/81 = 0,012345679012345679 répétition | 1/213 = 0,0024 |
25×3 | 1/96 = 0,0104166 repetition | 1/240 = 0,00213 |
22×52 | 1/100 = 0,01 | 1/244 = 0,002054320543 repetition |
22×33 | 1/108 = 0,00925925 repetition | 1/300 = 0,002 |
53 | 1/125 = 0,008 | 1/325 = 0,0014211153224043351545031 0014211153224043351545031 repetition |
211 | 1/128 = 0,0078125 | 1/332 = 0,0014043 |
24×32 | 1/144 = 0,006944 repetition | 1/400 = 0,0013 |
25×5 | 1/160 = 0,00625 | 1/424 = 0,0012033 repetition |
2×34 | 1/162 = 0,0061728395061728395 repetition | 1/430 = 0,0012 |
210×3 | 1/192 = 0,00520833 repetition | 1/520 = 0,001043 |
23×52 | 1/200 = 0,005 | 1/532 = 0,0010251402514 repetition |
23×33 | 1/216 = 0,004629629 repetition | 1/1000 = 0,001 |
Main fraction
Enter the decimal equivalent in parentheses.
Up to ninths (except sevenths and eighths)
|
|
Tenths
- (1/10)ten = 1/14 = 0,0333…
- (3/10)ten = 3/14 = 0,1444…
- (7/10)ten = 11/14 = 0,4111…
- (9/10)ten = 13/14 = 0,5222…
Twelfths (1 / 22×3)
- (1/12)ten = 1/20 = 0,03 (3/36)
- (5/12)ten = 5/20 = 0,23 (15/36)
- (7/12)ten = 11/20 = 0,33 (21/36)
- (11/12)ten = 15/20 = 0,53 (33/36)
Eighteenth (1 / 2×32)
- (1/18)ten = 1/30 = 0,02 (3/36)
- (5/18)ten = 5/30 = 0,14 (10/36)
- (7/18)ten = 11/30 = 0,22 (14/36)
- (11/18)ten = 15/30 = 0,34 (22/36)
- (13/18)ten = 21/30 = 0,42 (26/36)
- (17/18)ten = 25/30 = 0,54 (34/36)
Eighths (2-3)
- (1/8)ten = 1/12 = 0,043 (27/216)
- (3/8)ten = 3/12 = 0,213 (81/216)
- (5/8)ten = 5/12 = 0,343 (135/216)
- (7/8)ten = 11/12 = 0,513 (189/216)
Twenty-sevenths (3-3)
|
|
Calculation examples
1/2, 1/4
- Decimal: 49 ÷ 2 = 24,5
- Senary: 121 ÷ 2 = 40,3
- Decimal: 49 ÷ 4 = 12,25
- Senary: 121 ÷ 4 = 20,13
1 / 23 (1/8 in decimal)
- Decimal: 27 ÷ 8 = 3,375
- Senary: 43 ÷ 12 = 3,213
- Decimal: 100 ÷ 8 = 12,5
- Senary: 244 ÷ 12 = 20,3
1/3
- Octal: 100 ÷ 3 = 25,2525…
- Senary: 144 ÷ 3 = 33,2
- Decimal: 100 ÷ 3 = 33,3333…
- Senary: 244 ÷ 3 = 53,2
- Hexadecimal: 100 ÷ 3 = 55,5555…
- Senary: 1104 ÷ 3 = 221,2
1/9, 1/100 in senary (1/36 in decimal)
- Octal: 100 ÷ 11 = 7,0707…
- Senary: 144 ÷ 13 = 11,04
- Decimal: 1000 ÷ 9 = 111,1111…
- Senary: 4344 ÷ 13 = 303,04
- Hexadecimal: 100 ÷ 9 = 1C,71C71C…
- Senary: 1104 ÷ 13 = 44,24
- Decimal: 19 ÷ 36 = 0,52777…
- Senary: 31 ÷ 100 = 0,31
1 / 33 (1/27 in decimal), 1/1000 in senary (1/216 in decimal)
- Decimal: 8 ÷ 27 = 0,296296…
- Senary: 12 ÷ 43 = 0,144
- Decimal: 100 ÷ 27 = 3,703703…
- Senary: 244 ÷ 43 = 3,412
- Hexadecimal: 100 ÷ 1B = 9.7B425ED097B425ED09…
- Decimal: 256 ÷ 27 = 9,481481…
- Senary: 1104 ÷ 43 = 13,252
- Decimal: 125 ÷ 216 = 0,578703703…
- Senary: 325 ÷ 1000 = 0,325
1/5
- Octal : 100 ÷ 5 = 14.63146314…
- Decimal: 64 ÷ 5 = 12,8
- Senary: 144 ÷ 5 = 20,4444…
- Hexadecimal: 100 ÷ 5 = 33,3333…
- Decimal: 256 ÷ 5 = 51,2
- Senary: 1104 ÷ 5 = 123,1111…
1 / 52 (1/25 in decimal), 1/100 in decimal
- Decimal: 8 ÷ 25 = 0,32
- Senary: 12 ÷ 41 = 0,1530415304…
- Hexadecimal: 100 ÷ 19 = A.3D70A3D70A…
- Decimal: 256 ÷ 25 = 10,24
- Senary: 1104 ÷ 41 = 14,1235012350…
- Decimal: 53 ÷ 100 = 0,53
- Senary: 125 ÷ 244 = 0,310251402514…
1 / 24 (1/16 in decimal)
- Decimal: 11 ÷ 16 = 0,6875
- Senary: 15 ÷ 24 = 0,4043
- Decimal: 2023 ÷ 16 = 126,4375
- Senary: 13211 ÷ 24 = 330,2343
- Decimal: 6561 ÷ 16 = 410,0625
- Senary: 50213 ÷ 24 = 1522,0213
1 / 34 (1/81 in decimal)
- Decimal: 32 ÷ 81 = 0,395061728395061728…
- Senary: 52 ÷ 213 = 0,2212
- Decimal: 256 ÷ 81 = 3,160493827160493827…
- Senary: 1104 ÷ 213 = 3,0544
- Decimal: 625 ÷ 81 = 7,716049382716049382…
- Senary: 2521 ÷ 213 = 11,4144
Sources: PinterPandai,